How Time-Sensitive Networking Enables the IIoT

[fa icon='calendar'] Sep 5, 2016 10:17:20 AM / by Brittney Borowicz posted in DeviceNet, Ethernet, Ethernet IEEE 802, Featured In, General, Grid Connect, IIC, IIoT, Industrial, Industrial Internet Consortium, Industrial Internet of Things, Industry 4.0. Machine, Internet of Things, IoT, M2M, machine to machine, operational technology, PROFIBUS, tech, technology, testbed, time-sensitive networking, TSN

[fa icon="comment"] 0 Comments

The world’s first time-sensitive networking (TSN) testbed is being developed in a collaborative effort to change network infrastructure so that it will enhance the Industrial Internet of Things (IIoT). As this develops, it is essential that Industry 4.0. Machine designers, builders, and users have reliable and secure access to smart edge devices. This will force the current, standard network technologies to transform in an effort to meet the requirements of the next generation of industrial systems.

The testbed itself was designed to assist in creating a new wave of innovative technologies, products, applications, and services for the industrial internet market. The Industrial Internet Consortium (IIC), comprised of the corporations developing the testbed, are attempting to create a TSN in an “ecosystem of manufacturing applications,” which is based off of new Ethernet IEEE 802 standards. The goal of the testbed is to provide insight on the security of a TSN as well as highlight its real-time capabilities through the use of standard and converged Ethernet.

In order for TSNs to be taken seriously, it will be crucial that there are sufficient security measures utilized in order to protect the safety of IIoT users. It is essential that the TSN security is integrated as a layered system, meaning security is implemented throughout the network, because simply adding security as an additional feature at the end of development (air-gap security) leaves the network vulnerable as it is only a perimeter-based measure of defense. One beneficial aspect of time-sensitive networking is its ability to determine the exact instance data was sent and when it is supposed to arrive; if anyone intercepts packets of data it will be easy to tell. That being said, TSNs require a central management aspect that have the power to alter entire networks, which could be a challenge in terms of developing security.

The use of deterministic Ethernet will alter the various safety systems for TSNs by allowing messages to be scheduled from safety applications in order to provide high availability for safety systems. The real-time, synchronous mechanisms of the deterministic Ethernet will enable the connection of more devices and more machines, creating a powerful and integrated IIoT. Mike Justice, president of Grid Connect, believes that its use as a control network has the potential to replace other existing networks such as Profibus and DeviceNet.

As the real-time capabilities of deterministic Ethernet continue to develop, there will be several applications that will benefit from the use of a TSN. Machine-to-machine communication would improve as it needs to operate with low latency and high synchronization. Safety-based communications could access data more efficiently as it is currently mostly done through hardwiring. General motion and robot controls would improve as accessing data through standard communication could be done with ease. Essentially any latency-sensitive application would be much improved through the use of a TSN.

Another interesting application of a TSN can be observed through cloud and edge computing as they provide an infrastructure that will improve the functionality IoT technology. The use of deterministic Ethernet through TSNs could theoretically allow for machine control to be executed within a cloud environment, but there isn’t much room for error regarding latency in communication. Even though consumer and industrial applications of cloud-based machine control have different demands in terms of real-time dependency and data consumption, they are still in the foreseeable future if network stability can be established. Private, local clouds have had success in controlling machines, but large public clouds are more concerning with problems such as technical issues, data confidentiality, and security.

Time-sensitive networking is a feasible option for advancing the IIoT as long as it delivers on its promises of speed and security. It will be a major improvement to converge from information technology (IT) to operational technology (OT) in regards to the security and integration of cloud services. Justice states that “The controls industry is conservative and will follow the IT market in a few years after security issues are well-addressed.” The ability of TSNs to connect machines to the cloud and create real-time data messaging and analytics will improve the overall functionality of the IIoT.

 

Read more at: https://www.controldesign.com/articles/2016/how-time-sensitive-networking-enables-the-iiot/?start=4

Read More [fa icon="long-arrow-right"]

CAN FD – The Next Big (Fast) Thing

[fa icon='calendar'] Oct 26, 2015 9:52:30 AM / by Brittney Borowicz posted in arbitration process, automotive, automotive industry, CAN, CAN 2.0, CAN FD, CAN protocol, CANbus, CANopen, Classic CAN, DeviceNet, engines, factory automation, Fast Data, Flexible Data, General, Germany, hardware, in-vehicle communication, internal machine communication, ISO 11898, J1939, PEAK, Peak-System, Products, protocol, software, Technical Support, vehicle, White Papers

[fa icon="comment"] 0 Comments

 

The CAN protocol (ISO 11898) has remained relatively unchanged since it was introduced in 1993 as CAN 2.0 A/B. In the last few years, CAN FD (for Flexible Data rate or “Fast Data” as we like to call it) was introduced and is now defined as ISO 11898-1. The CAN FD protocol is backward compatible. Any CAN FD device can understand CAN 2.0 frames (now known as “Classic CAN”). However, the opposite is not true. If a Classic CAN node encounters a CAN FD frame, it will destroy the packet with an error frame.

Classic CAN has been the de facto standard for in-vehicle communication for the automotive industry since the 90s. CAN has also been used as the lower-layer protocol for a number of other “higher-layer” protocols such as CANopen, J1939, DeviceNet and more. This has resulted in the CAN protocol being widely deployed in factory automation, heavy-duty vehicles and engines, and internal machine communication – such as elevators and medical equipment.

The automotive industry is the main driver behind the adaptation of CAN FD. The complexity of software in automobiles has increased over time, and the number of systems that communicate with each other via CAN bus has also increased. Between 1990 and 2000, the number of in-vehicle bus nodes went from about 10 nodes to more than 40 systems. This trend has continued into the 21st century, as in-vehicle communication demands have put further and further strain on vehicle design, causing an ever increasing number of CAN bus networks in the vehicle. Through the adaption of CAN FD, in-vehicle communication architectures will be able to accomplish more with less!

The basic idea of CAN FD is to speed up the bit rate during the “payload” part of a CAN frame. In this way up to 8 times more payload (64 bytes vs. 8 bytes) can be delivered in the same amount of time. So the beginning and end of the frame are transmitted at “Classic CAN” speeds, and the CAN transceivers just flip a switch and speed up for the payload part of the message. When you consider that the rest of the frame is at slower speeds, the overall increase in speed is about 6 times faster. Not all messages need 64 bytes of data of course, so the diagram below shows how a CAN FD message of 8 bits and 64 bytes compare to a Classic CAN frame of 8 bytes.

CANFDdiagram

The question is why didn’t CAN FD just speed up the whole message? Why just the payload? The answer requires a slightly deeper understanding of the CAN protocol. A basic element of the CAN protocol is its arbitration process. When two nodes transmit at the same instant, their messages “collide” and they must both “back-off” and retransmit at different intervals according to priority. Another basic element of the protocol is that nodes on a bus must be reached within a “bit time” during this arbitration. The notion of a “bit time” has implications on the length of the bus – the actual cable, since electrical signals have a finite propagation speed. Therefore, a CAN bus running with 1 Mbit/s has a maximum length of 40 meters by rule of thumb. If CAN FD sped up the whole bus, the higher bit rates would shorten the bus cable to unsuitable lengths.

The automotive industry is readying itself to start initial implementation of CAN FD in its designs for 2016, with vehicles hitting the market with CAN FD hardware the following year. As this industry ramps up and more and more ECU’s (in-vehicle “Electronic Control Units) and sensors and actuators also adapt CAN FD, more companies with ties to automotive (suppliers, service companies, dealers, OEMs, etc.) will need CAN FD-capable interfaces. Luckily, Peak-System from Germany is one of the first companies to introduce a CAN-FD interface, (PCAN-USB-FD), and it has been fully tested to the standard. Additional hardware and software supporting CAN FD are on the way. Grid Connect has Peak’s CAN FD products in stock now – we are ready for the next big (fast) thing!

> Click here to download the complete CAN FD White Paper

Read More [fa icon="long-arrow-right"]

Grid Connect is a World Class Manufacturer

[fa icon='calendar'] Aug 17, 2015 9:59:54 AM / by Brittney Borowicz posted in 900MHz, BLE, Bluetooth, CANbus, chips, connection, Custom, development, DeviceNet, Ethernet, firmware, General, Grid Connect, hardware, I2C, Illinois, manufacturer, manufacturing, modbus, modbus tcp, modules, Naperville, network, NRE, packaging, private-labeled, PROFIBUS, PROFINET, RS-232, RS-422, RS-485, software, SPI, Wi-Fi, ZigBee, wifi

[fa icon="comment"] 0 Comments

WeAre_Banner_Manufacturer_2

Grid Connect Inc. is an ISO 9001-certified, world-class quality manufacturer. Our chips, modules and products are used by thousands of companies around the world to provide a network connection to their devices. All of our products are designed, assembled, programmed and tested in Illinois, USA. All final tests, firmware loading and packaging is done at Grid Connect in Naperville, Illinois.

All Grid Connect products can be customized and private-labeled to a specific customer’s requirements. It can be as simple as a software change to increase buffer sizes or as complex as a new hardware and software design. In all cases, Grid Connect will provide your company with a fixed price quotation for the NRE/development work and the production cost for the final product. We are happy to private label your product and ship it to you with the correct labeling and documentation.

Some networking and protocol technologies that Grid Connect specializes in, include:

  • Ethernet
  • Ethernet/IP
  • Wi-Fi
  • Bluetooth
  • ZigBee
  • 900MHz
  • PROFIBUS
  • PROFINET
  • CANbus
  • DeviceNet
  • Modbus
  • Modbus TCP

Grid Connect also specialized in all serial standards, including:

  • RS-232
  • RS-485
  • RS-422
  • SPI
  • I2C


For more specific detailing of the various hardware and software options we provide, call the Grid Connect office at +1 (800) 975-GRID or fill out the form here.

Read More [fa icon="long-arrow-right"]

Candid about our CANbus Solutions

[fa icon='calendar'] May 4, 2015 4:08:29 PM / by Brittney Borowicz posted in CAN, CAN Adapter, CAN Interface Adapter, CANbus, DeviceNet, DeviceNet Detective, General, Grid Connect, I/O modules, PCAN, PCAN Diag 2, PCAN Hardware, PCAN Software, PCAN USB, Products, troubleshoot

[fa icon="comment"] 0 Comments

PCAN

Grid Connect provides deep technical expertise in CANbus solutions. We offer the industry leading PCAN USB Adapter as well as a wide selection of other PCAN products.

CAN Adapters
Whether you are need a CAN interface for USB, RS232, PCI, PC/104, PCI-Express and many more. Grid Connect has the CAN Adapter to meet your needs.

PCAN Software
Own a Peak-System CAN USB or other CAN Interface Adapter (PCI, PC/104, Dongle, etc)? We provide a complete offering of PCAN Software to compliment your PCAN Hardware.

PCAN Explorer 5 is the industry-leading solution for monitoring CANBUS traffic.

Looking to develop software for PCAN Hardware? We have both free and premium PCAN developer software packages.

Interested in a 30 day trial of PCAN Explorer 5? Request a Trial Here!

Diagnostic Tools
Check out our newest diagnostic tool, DeviceNet Detective 2. A must have for any DeviceNet network.

Grid Connect has the CAN Diagnostic Tools to help you troubleshoot your CANBUS issues. We offer the PCAN Diag 2, an invaluable handheld diagnostic tool as well as other hardware and software solutions for investigating your CANbus.

PCAN Cables & Terminators
Need a CAN cable, converter or terminator? Grid Connect keeps all your CAN accessory needs in stock and ready to ship!

PCAN I/O Modules
Grid Connect provides a complete line of CAN I/O Modules to meet your application requirements. These fully programmable I/O modules allow for a wide variety of configuration options for a powerful and cost effective solution.

For more information and to view all CAN products designed to fit your needs, click here or call the Grid Connect office at +1 (630) 245-1445.

Read More [fa icon="long-arrow-right"]

Subscribe to Email Updates

Lists by Topic

see all